3,299 research outputs found

    Multi-Thread Hydrodynamic Modeling of a Solar Flare

    Full text link
    Past hydrodynamic simulations have been able to reproduce the high temperatures and densities characteristic of solar flares. These simulations, however, have not been able to account for the slow decay of the observed flare emission or the absence of blueshifts in high spectral resolution line profiles. Recent work has suggested that modeling a flare as an sequence of independently heated threads instead of as a single loop may resolve the discrepancies between the simulations and observations. In this paper we present a method for computing multi-thread, time-dependent hydrodynamic simulations of solar flares and apply it to observations of the Masuda flare of 1992 January 13. We show that it is possible to reproduce the temporal evolution of high temperature thermal flare plasma observed with the instruments on the \textit{GOES} and \textit{Yohkoh} satellites. The results from these simulations suggest that the heating time-scale for a individual thread is on the order of 200 s. Significantly shorter heating time scales (20 s) lead to very high temperatures and are inconsistent with the emission observed by \textit{Yohkoh}.Comment: Submitted to Ap

    Non-equilibrium of Ionization and the Detection of Hot Plasma in Nanoflare-heated Coronal Loops

    Full text link
    Impulsive nanoflares are expected to transiently heat the plasma confined in coronal loops to temperatures of the order of 10 MK. Such hot plasma is hardly detected in quiet and active regions, outside flares. During rapid and short heat pulses in rarified loops the plasma can be highly out of equilibrium of ionization. Here we investigate the effects of the non-equilibrium of ionization (NEI) on the detection of hot plasma in coronal loops. Time-dependent loop hydrodynamic simulations are specifically devoted to this task, including saturated thermal conduction, and coupled to the detailed solution of the equations of ionization rate for several abundant elements. In our simulations, initially cool and rarified magnetic flux tubes are heated to 10 MK by nanoflares deposited either at the footpoints or at the loop apex. We test for different pulse durations, and find that, due to NEI effects, the loop plasma may never be detected at temperatures above ~5 MK for heat pulses shorter than about 1 min. We discuss some implications in the framework of multi-stranded nanoflare-heated coronal loops.Comment: 22 pages, 7 figures, accepted for publicatio

    A new Method to Constrain the Iron Abundance from Cooling Delays in Coronal Loops

    Full text link
    Recent observations with TRACE reveal that the time delay between the appearance of a cooling loop in different EUV temperature filters is proportional to the loop length, dt_12 ~ L. We model this cooling delay in terms of radiative loss and confirm this linear relationship theoretically. We derive an expression that can be used to constrain the coronal iron enhancement alpha_Fe=A_Fe^cor/A_Fe^Ph relative to the photospheric value as function of the cooling delay dt_12, flux F_2, loop width w, and filling factor q_w < 1. With this relation we find upper limits on the iron abundance enhancement of alpha_Fe < 4.8+/-1.7 for 10 small-scale nanoflare loops, and alpha_Fe < 1.4+/-0.4 for 5 large-scale loops, in the temperature range of T~1.0-1.4 MK. This result supports the previous finding that low-FIP elements, including Fe, are enhanced in the corona. The same relation constitutes also a lower limit for the filling factor, which is q_w > 0.2+/-0.1 and q_w > 0.8+/-0.2 for the two groups of coronal loops.Comment: 2 Figure

    How to Commission, Operate and Maintain a Large Future Accelerator Complex from Far Remote

    Get PDF
    A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commi-ssioning, machine development, maintenance, trouble shooting and repair. Experience from existing accele-rators confirms that most of these activities are already performed 'remotely'. The large high-energy physics ex-periments and astronomy projects, already involve inter-national collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for par-ticularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems.Comment: ICALEPCS 2001 abstract ID No. FRBI001 invited talk submitting author F. Willeke 5 pages, 1 figur

    Beam diagnostics for charge and position measurements in ELI-NP GBS

    Get PDF
    The advanced source of Gamma-ray photons to be built in Bucharest (Romania), as part of the ELI-NP European Research Infrastructure, will generate photons by Compton back-scattering in the collision between a multi-bunch electron beam and a high intensity recirculated laser pulse. An S-Band photoinjector and the following C-band Linac at a maximum energy of 720MeV, under construction by an European consortium (EurogammaS) led by INFN, will operate at 100Hz repetition rate with trains of 32 electron bunches, separated by 16ns and a 250pC nominal charge. The different BPMs and current transformers used to measure transverse beam position and charge along the LINAC are described. Design criteria, production status and bench test results of the charge and position pickups are reported in the paper, together with the related data acquisition systems

    New trends in teacher\u2019s education. Educational placement of the adopted child

    Get PDF
    In Italy, the number of adopted school-age children is increasing. According to the Commission of Intercountry Adoption (2013), 3106 children were adopted, 47.5% of them are between 5 and 9 years old. The present action-research aims at exploring the spread of good approaches in schools in terms of welcoming of adopted children. For this purpose, 268 teachers of primary schools were involved in analyzing the social representation about adopted children and their family. The results show a simplified vision of the adoptive family, which is described as heroic family or, on the contrary, as a family with difficulty

    A cerebral bridge from olfactory cognition to spatial navigation

    Get PDF
    An evolutionary paradox is the variability of the olfactory bulb size, in contrast to the other brain regions, which are sized proportionally to the peripheral function. This variability seems to be the result of selection for the olfactory function. This disagreement may derive from considering smell as a sense linked to odorous discrimination. In many vertebrates and in terrestrial and marine mammals, the sense of smell has evolved into functions related to the eco-localization. So, if the olfactory function involves spatial perception and navigation, this, couldexplain the proportional discrepancy between the olfactory bulb and olfactory cortex. Humans are able to discriminate a spatial position as a function of olfactory cues. Vice versa, in neurodegenerative syndromes the orientation capacity and olfactory perception are impaired. This leads us to think that could be a common cross-modal processing, of phylogenetic origin, which links olfactory perception and spatial orientation. Starting from these theoretical assumptions, we conducted a basic research, on 100 healthy subjects, investigating, through both behavioral and electroencephalographic data, the connection between spatial memory span and olfactory spatial memory span. Subjects were assessed through a three-condition task: normal Corsi Block Test (CBT), ‘Olfactory’ Block Test (OBT) and a ‘Semantic-Olfactory’ Block Test (SOBT). CBT consisted in a test on spatial memory span; OBT consisted in a presentation a spatial sequences of 9 different odorants (i.e., Eucalyptol, Carvone, Eugenol, Isoamyl Acetate, Geraniol, Phenethyl Alcohol, Acetophenone, Cinnamon, Hexanal) instilled on paper square not recognizable by any sign, positioned on a CBT, and showed in a spatial navigation way, and SOBT consisted of a semantic labelled of olfactory spatial navigation. A GLM repeated measure highlighted significant differences during the three conditions. Subjects had different SPANs due to different conditions. The Semantic olfactory memory SPAN was inferior respect Olfactory span and Spatial Span. Furthermore was found a significant positive correlation between the three condition. The 5 subjects with higher SPAN scores, 5 with medium scores and the 5 subjects with lower SPAN scores were recruited to investigate ERP components elicited during the cross-modal task. Subjects had to perform, during a high-density EEG recording, an olfactory task (administered through the device US2017127971 (A1) “? 2017-05-11), an EEG Posner spatial cueing task and a go/no-go olfactory semantic categorization task. The results of this study will be discussed in light of a theoretical connection between these three aspects of cortical functions that seem strongly interconnected
    • …
    corecore